skip to main content


Search for: All records

Creators/Authors contains: "Keel, William C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present the results of a search for extended emission-line regions (EELRs) ionized by extant or recently faded active galactic nuclei (AGNs), using [O III] narrow-band imaging and spectroscopic follow-up. The sample includes 198 galaxies in 92 strongly interacting or merging galaxy systems in the range of z = 0.009–0.0285. Among these, three systems have EELRs extended beyond 10 kpc in projection from the nucleus detected in previous studies. We identify a single new distant emission region, projected 35 kpc from UGC 5941. Our optical spectrum does not detect He II, but its strong-line ratios put this in the same class as securely characterized EELR clouds. The nucleus of UGC 5941 is dominated by recent star formation, preventing detection of any weak ongoing AGN. Overall counts of distant EELRs in this and the previous TELPERION samples give incidence 2–5 per cent depending on galaxy and AGN selection, 20–50 times higher than the Galaxy Zoo EELR survey with its higher surface-brightness threshold and much larger input sample. AGNs in interacting and merging systems have an increased detection rate of 12 ± 6 per cent, while none are detected around non-interacting AGNs. Some of these AGNs are at luminosity low enough to require additional X-ray or far-infrared information to tell whether the EELR ionization level suggests long-term fading.

     
    more » « less
  2. Abstract

    We derive the spatial and wavelength behavior of dust attenuation in the multiple-armed spiral galaxy VV 191b using backlighting by the superimposed elliptical system VV 191a in a pair with an exceptionally favorable geometry for this measurement. Imaging using the James Webb Space Telescope and Hubble Space Telescope spans the wavelength range 0.3–4.5μm with high angular resolution, tracing the dust in detail from 0.6–1.5μm. Distinct dust lanes continue well beyond the bright spiral arms, and trace a complex web, with a very sharp radial cutoff near 1.7 Petrosian radii. We present attenuation profiles and coverage statistics in each band at radii 14–21 kpc. We derive the attenuation law with wavelength; the data both within and between the dust lanes clearly favor a stronger reddening behavior (R=AV/EBV≈ 2.0 between 0.6 and 0.9μm, approaching unity by 1.5μm) than found for starbursts and star-forming regions of galaxies. Power-law extinction behavior ∝λβgivesβ= 2.1 from 0.6–0.9μm.Rdecreases at increasing wavelengths (R≈ 1.1 between 0.9 and 1.5μm), whileβsteepens to 2.5. Mixing regions of different column density flattens the wavelength behavior, so these results suggest a different grain population than in our vicinity. The NIRCam images reveal a lens arc and counterimage from a background galaxy atz≈ 1, spanning 90° azimuthally at 2.″8 from the foreground elliptical-galaxy nucleus, and an additional weakly lensed galaxy. The lens model and imaging data give a mass/light ratioM/LB= 7.6 in solar units within the Einstein radius 2.0 kpc.

     
    more » « less
  3. Abstract We describe the Gems of the Galaxy Zoos (Zoo Gems) project, a gap-filler project using short windows in the Hubble Space Telescope's schedule. As with previous snapshot programs, targets are taken from a pool based on position; we combine objects selected by volunteers in both the Galaxy Zoo and Radio Galaxy Zoo citizen-science projects. Zoo Gems uses exposures with the Advanced Camera for Surveys to address a broad range of topics in galaxy morphology, interstellar-medium content, host galaxies of active galactic nuclei, and galaxy evolution. Science cases include studying galaxy interactions, backlit dust in galaxies, post-starburst systems, rings and peculiar spiral patterns, outliers from the usual color–morphology relation, Green Pea compact starburst systems, double radio sources with spiral host galaxies, and extended emission-line regions around active galactic nuclei. For many of these science categories, final selection of targets from a larger list used public input via a voting process. Highlights to date include the prevalence of tightly wound spiral structure in blue, apparently early-type galaxies, a nearly complete Einstein ring from a group lens, redder components at lower surface brightness surrounding compact Green Pea starbursts, and high-probability examples of spiral galaxies hosting large double radio sources. 
    more » « less
  4. null (Ed.)
    ABSTRACT Motivated by the discovery of large ionized clouds around AGN, and particularly the large fraction of those that are consistent with photoionized gaseous tidal debris, we searched for [O iii] emission around Seyfert galaxies previously mapped in H i, many with extended gas features. Of 26 Seyfert galaxies, we find one spatially extended emission feature, a discrete cloud projected ≈12 kpc SW from the centre of Mkn 1 and spanning a transverse extent of 8 kpc. Optical spectroscopy (Kast/Lick and SCORPIO/BTA) of this cloud confirms its association with the Mkn 1–NGC 451 galaxy pair, closely matching the kinematics of nearby H i structures, and reveals emission-line ratios requiring photoionization by the AGN at roughly the direct observed luminosity of the nucleus. For the entire sample, the full opening angle of the ionization cones (bicones) must be <20° if the AGNs are continuously bright for scales longer than the light-traveltimes to the H i structures. Since typical AGN ionization cones are observed to be much broader than this, our low detection fraction may add to evidence for the ubiquity of strong variations in AGN luminosity on scales 104–105 yr. 
    more » « less
  5. Abstract

    We use new Hubble Space Telescope (HST) images of nine Green Pea galaxies (GPGs) to study their resolved structure and color. The choice of filters, F555W and F850LP, together with the redshift of the galaxies (z∼ 0.25), minimizes the contribution of the nebular [Oiii] and Hαemission lines to the broadband images. While these galaxies are typically very blue in color, our analysis reveals that it is only the dominant stellar clusters that are blue. Each GPG does clearly show the presence of at least one bright and compact star-forming region, but these are invariably superimposed on a more extended and lower surface brightness emission. Moreover, the colors of the star-forming regions are on average bluer than those of the diffuse emission, reaching up to 0.6 magnitudes bluer. Assuming that the diffuse and compact components have constant and single-burst star formation histories, respectively, the observed colors imply that the diffuse components (possibly the host galaxy of the star formation episode) have, on average, old stellar ages (>1 Gyr), while the star clusters are younger than 500 Myr. While a redder stellar component is perhaps the most plausible explanation for these results, the limitations of our current data set lead us to examine possible alternative mechanisms, particularly recombination emission processes, which are unusually prominent in systems with such strong line emission. With the available data, however, it is not possible to distinguish between these two interpretations. A substantial presence of old stars would indicate that the mechanisms allowing large escape fractions in these local galaxies may be different from those at play during the reionization epoch.

     
    more » « less
  6. Abstract We give an overview and describe the rationale, methods, and first results from NIRCam images of the JWST “Prime Extragalactic Areas for Reionization and Lensing Science” (PEARLS) project. PEARLS uses up to eight NIRCam filters to survey several prime extragalactic survey areas: two fields at the North Ecliptic Pole (NEP); seven gravitationally lensing clusters; two high redshift protoclusters; and the iconic backlit VV 191 galaxy system to map its dust attenuation. PEARLS also includes NIRISS spectra for one of the NEP fields and NIRSpec spectra of two high-redshift quasars. The main goal of PEARLS is to study the epoch of galaxy assembly, active galactic nucleus (AGN) growth, and First Light. Five fields—the JWST NEP Time-Domain Field (TDF), IRAC Dark Field, and three lensing clusters—will be observed in up to four epochs over a year. The cadence and sensitivity of the imaging data are ideally suited to find faint variable objects such as weak AGN, high-redshift supernovae, and cluster caustic transits. Both NEP fields have sightlines through our Galaxy, providing significant numbers of very faint brown dwarfs whose proper motions can be studied. Observations from the first spoke in the NEP TDF are public. This paper presents our first PEARLS observations, their NIRCam data reduction and analysis, our first object catalogs, the 0.9–4.5 μ m galaxy counts and Integrated Galaxy Light. We assess the JWST sky brightness in 13 NIRCam filters, yielding our first constraints to diffuse light at 0.9–4.5 μ m. PEARLS is designed to be of lasting benefit to the community. 
    more » « less